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Filter Transformations

Lowpass to Bandpass



Theorem:   If the perimeter variations and contact resistance are neglected, 

the standard deviation  of the local random variations of a resistor of area A is 

given by the expression
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Theorem:   If the perimeter variations are neglected, the standard deviation  of 

the local random variations of a capacitor of area A is given by the expression
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Theorem:   If the perimeter variations are neglected, the variance of the local 

random variations of the normalized threshold voltage of a rectangular MOS 

transistor of dimensions W and L  is given by the expression
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Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized  COX of a rectangular MOS transistor of 

dimensions W and L  is given by the expression
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Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized mobility  of a rectangular MOS transistor 

of dimensions W and L  is given by the expression

where the parameters AX are all constants characteristic of the process 

(i.e. model parameters)

• The effects of edge roughness on the variance of resistors, capacitors, and 

transistors can readily be included but for most layouts is dominated by the 

area dependent variations

• There is some correlation between the model parameters of MOS transistors but 

they are often ignored to simplify calculations
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Statistical Modeling of dimensionless 

parameters - example
2

1

R
K = 1+

R

Determine the yield if the nominal gain is 10  1%

 
N

K
 N 1,  0.00095

K


9.9  < K < 10.1

N

K
.99  <  < 1.01
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K
 -1

K
-10<  < 10

.00095
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 N 0,1

0.00095





N

K
-.01<  -1< .01

K

The gain yield is essentially 100%

Could substantially decrease area or increase 

gain accuracy if desired

Assume common centroid layout

area of R1 is 100u2 Aρ=.01µm 
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VIN
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R1

Statistical Modeling of dimensionless 

parameters - example
2

1

R
K = 1+

R

Determine the yield if the nominal gain is 10  1%

 
N

K
 N 1,  0.0075

K


9.9  < K < 10.1

N

K
.99  <  < 1.01

K

N

K
 -1

K
-1.33<  < 1.33

.0075

 
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N

K

K
 N 0,1
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



N

K
-.01<  -1< .01

K

 N(0,1)Y = 2F 1.33 -1 = 2*.9082-1  = 0.8164

Dramatic drop from 100% yield to about 82% yield!

Aρ=.025um AR1=10um2
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Statistical Modeling of Filter Characteristics

The variance of dimensioned filter parameters (e.g. ω0, poles, band edges, …) 

is often very large due to the process-level random variables which dominate 

The variance of dimensionless filter parameters (e.g. Q, gain, …) are often 

quite small since in a good design they will depend dominantly on local random 

variations which are much smaller than process-level variations 

The variance of dimensionless filter parameters is invariably proportional to the 

reciprocal of the square root of the relevant area and thus can be managed 

with appropriate area allocation
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Linearization of Functions of a Random Variable

• Characteristics of most circuits of interest are themselves random variables

• Relationship between characteristics and the random variables often highly 

nonlinear

• Ad Hoc manipulations (repeated Taylor’s series expansions) were used to 

linearize the characteristics in terms of the random variables

• This is important because if the random variables are uncorrelated the 

variance of the characteristic can be readily obtained 

• This approach was applicable  since the random variables are small

• These Ad Hoc manipulations can be formalized and this follows
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Formalization of Statistical Analysis
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Thus:

• Sensitivity analysis often used for statistical characterization of 

filter performance

• This is often much faster and less tedious than doing the linearization 

as described above though actually concepts are identical
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Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter

Have been focusing on the Approximation Problem

Classical approximations have been all lowpass

Will now obtain BP, HP, and BR approximations

Could repeat the process used for LP 

approximations but will use simple transformations 

to obtain Classical BP, HP and BR approximations



Filter Transformations

Lowpass to Bandpass      (LP to BP)

Lowpass to Highpass       (LP to HP)

Lowpass to Band-reject   (LP to BR)

Approach will be to take advantage of the results obtained for the 

standard LP approximations 

Will focus on flat passband and zero-gain stop-band transformations

Will focus on transformations that map passband to passband and 

stopband to stopband



Filter Transformations

If the imaginary axis in the s-plane is mapped to the imaginary axis in the s-plane 

with a variable mapping function, the basic shape of the function T(s) will be 

preserved in the function T(f(s)) but the frequency axis may be warped and/or 

folded

Claim:  

Preserving basic shape, in this context, constitutes maintaining features in the 

magnitude response of T(f(s)) that are in T(s) including, but not limited to,  the 

peak amplitude, number of ripples, peaks of ripples, ….

XIN XOUT T s
XIN XOUT

 MT s s  f s

    MT s T f s



Example:  Shape Preservation  
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Example:  Shape Preservation  

ω

A

B

C

Original Function

Shape Not Preserved

A

B

C

ω



Flat Passband/Stopband Filters

ω

 T j
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Lowpass Bandpass

Highpass Bandreject



Filter Transformations

Lowpass to Bandpass      (LP to BP)

Lowpass to Highpass       (LP to HP)

Lowpass to Band-reject   (LP to BR)

• Approach will be to take advantage of the results obtained for the 

standard LP approximations 

• Will focus on flat passband and zero-gain stop-band 

transformations

• Will focus on transformations that map passband to passband, 

stopband to stopband, and Im axis to Im axis



LP to BP Filter Transformations

XIN XOUT

 LPNT s
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Will consider rational fraction mappings

• Not all rational fraction mappings will map Im axis to the Im axis

• Not all rational fraction mappings will map passband to passband and

stopband to stopband

• Consider only that subset of those mappings with these properties



LP to BP Transformation

Mapping Strategy:  Consider first a mapping to a normalized BP approximation
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1
AN BN

  

Normalized

-1

 s f s



LP to BP Transformation

Mapping Strategy:  Consider first a mapping to a normalized BP approximation

1

1

ω
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ωωAN ωBN

 T j  
BP

T j

BWN

N BN AN
BW   

1
AN BN

  

Normalized

-1
-1

- ωAN - ωBN

BWN

 s f s

Thus, must consider both positive and negative frequencies.  Since          is a 

function of ω2, the magnitude response on the negative ω axis will be a 

mirror image of that on the positive ω axis 

A mapping from s → f(s) will map the entire imaginary axis

 T jω



Standard LP to BP Transformation
Normalized LP to Normalized BP mapping Strategy:

map s=j0 to s= j1

map s=j1 to s=jωBN

map s= –j1 to s= jωAN

TLPN(f(s)) map ω=0 to ω=1

map ω=1 to ω=ωBN

map ω= –1 to ω=ωAN

TLPN(s) TBPN(s)
TLPN(f(s))

Variable Mapping Strategy to Preserve Shape of LP function:
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 T j  
BP

T j

BWN

N BN AN
BW   

1
AN BN

  

Normalized

-1
-1

- ωAN - ωBN

BWN

 s f s

s-domain ω-domain
consider:

This mapping will introduce 3 constraints



Standard LP to BP Transformation

Mapping Strategy:

Consider variable mapping 

2

N

s +1
s

s•BW


map s=0 to s= j1

map s=j1 to s=jωBN

map s= –j1 to s= jωAN

map ω=0 to ω=1

map ω=1 to ω=ωBN

map ω= –1 to ω=ωAN

s-domain ω-domain

 
2

T2 T1 T0

T1 T0

a s a s+a
f s  = 

b s+b



With this mapping, there are  5 D.O.F and 3 mathematical constraints and the 

additional constraints that the Im axis maps to the Im axis and maps PB to PB 

and SB to SB

Will now show that the following mapping will meet these constraints

 
2

N

s +1
f s

s•BW
 or 

equivalently

This is the lowest-order mapping that will meet these constraints and it doubles 

the order of the approximation

TLPN(f(s))

TLPN(s) TBPN(s)
TLPN(f(s))



Standard LP to BP Transformation

Verification of mapping Strategy:
2
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Must still show that the Im axis maps to the Im axis and maps PB to PB and 

SB to SB

map s=0 to s= j1

map s=j1 to s=jωBN

map s= –j1 to s= jωAN

map ω=0 to ω=1

map ω=1 to ω=ωBN

map ω= –1 to ω=ωAN

s-domain ω-domain

TLPN(f(s))



Standard LP to BP Transformation

Verification of mapping Strategy:
2

N

s +1
s

s•BW


The mapping                              is termed the standard LP to BP transformation

2

N

s +1
s

s•BW


map s=0 to s= j1

map s=j1 to s=jωBN

map s= –j1 to s= jωAN

map ω=0 to ω=1

map ω=1 to ω=ωBN

map ω= –1 to ω=ωAN

s-domain ω-domain

TLPN(f(s))

Image of Im axis:
2

N

s +1
jω =

s•BW

   
2 2

N N N N
jω•BW ± BW jω - 4 ω•BW ± BW ω + 4

s j
2 2

  
  
 
 

solving for s, obtain

this has no real part so the imaginary axis maps to the imaginary axis

Can readily show this mapping maps PB to PB and SB to SB



Standard LP to BP Transformation

2

N

s +1
s

s•BW
The standard LP to BP transformation

Question:   Is this mapping dimensionally consistent ?

2

x

N

s +1
s

s•BW


If we add a subscript to the LP variable for notational convenience, can express this mapping as

• The dimensions of BWN must be set so that this is dimensionally consistent

• The dimensions of the constant “1” in the numerator must be set so that this 

is dimensionally consistent



Standard LP to BP Transformation
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Standard LP to BP Transformation
Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)

TLPN(sx)

TBPN(s)

X

2
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    s

s +1

s•BW



2

X

N

s +1
s

s•BW


2

X

N

ω -1
ω

ω•BW


 
2

X N N X
s •BW ± BW s - 4

s
2




 
2

X N N X
ω •BW ± BW ω 4

ω
2

 


solving for s or ω

Exercise:  Resolve the dimensional consistency in the last equation



Standard LP to BP Transformation

ω
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1

ω

1

ωA ωB

 
LP

T j

 
BP

T j

BW
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- ωB - ωA

BW

- ωM ωM

TLPN(s)

TBP(s)
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    s

s +ω
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Denormalized Mapping



Standard LP to BP Transformation
Frequency and s-domain  Mappings - Denormalized

(subscript variable in LP approximation for notational convenience)

TLPN(sx)

TBP(s)

X
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
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 
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Exercise:  Resolve the dimensional consistency in the last equation



Standard LP to BP Transformation
Frequency and s-domain  Mappings - Denormalized

(subscript variable in LP approximation for notational convenience)

All three approaches give same approximation

TLPN(sx)

TBPN(sN)

X
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 
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 
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

N
 s
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W
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2

N

s +1
  

s•BW

Which is most practical to use? Often none of them !



Standard LP to BP Transformation
Frequency and s-domain  Mappings - Denormalized

(subscript variable in LP approximation for notational convenience)

TLPN(sx)

TBPN(sN)

X
    s

 
2

N

N N

s +1
  

s •BW

Often most practical to synthesize directly from the TBPN and then do the 

frequency scaling of components at the circuit level rather than at the 

approximation level



Standard LP to BP Transformation
Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)

2

X

N

s +f 1
s

s•BW


 1 2

N
f

X N X
s •BW ± BW s - 4

s
2

 


solving for s 

Poles and Zeros of the BP approximations

Since this relationship maps the complex plane to the complex plane, it also 

maps the poles and zeros of the LP approximation to the poles and zeros of 

the BP approximation

  0LPN xT p 

    BP LPNT s T f s

   0LPNT f p 

     0BP LPNT p T f p 



Standard LP to BP Transformation
Pole Mappings

TLPN(sx)

TBPN(s)

X

2

N

    s

s +1

s•BW



2

X

N

p +1
p

p•BW


 
2

X N N X
p •BW ± BW p - 4

p
2




Claim:  With a variable mapping transform, the variable mapping naturally

defines the mapping of the poles of the transformed function

Exercise:  Resolve the dimensional consistency in the last equation



Standard LP to BP Transformation
Pole Mappings

 
2

X N N X
p •BW ± BW p - 4

p
2




Re

Im

Re

Im

 0BPH LBPHω ,Q

 0LP LPω ,Q

 0BPL LBPLω ,Q

Image of the cc pole pair is the two pairs of poles



Standard LP to BP Transformation
Pole Mappings

Can show that the upper hp pole maps to one upper hp pole and one lower hp pole 

as shown.  Corresponding mapping of the lower hp pole is also shown

Re

Im

Re

Im

 0BPH LBPHω ,Q

 0LP LPω ,Q

 0BPL LBPLω ,Q



Standard LP to BP Transformation
Pole Mappings

 
2

X N N X
p •BW ± BW p - 4

p
2




Re

Im

Re

Im

multipliity 6

Note doubling of poles, addition of zeros, and likely Q enhancement



LP to BP Transformation

TLPN(sx)

TBPN(s)

X

2

    s

f (s)



Claim:  Other variable mapping transforms exist that  satisfy the

imaginary axis mapping properties needed to obtain the LP to BP

transformation but are seldom, if ever, discussed.  The Standard 

LP to BP transform Is by far the most popular  and most authors 

treat it as if it is unique.  



LP to BP Transformation

Pole Q of BP Approximations

ω

 
LPN

T j

ω

 
BP

T j

1

1

ωM

BW

ωL ωH

H LBW = ω - ω

M H Lω ω ω

Consider a pole in the LP approximation characterized by {ω0LP,QLP}

It can be shown that the corresponding BP poles have the same Q 
(i.e. both bp poles lie on a common radial line)

Re

Im

Re

Im

 0BPH LBPHω ,Q

 0LP LPω ,Q

 0BPL LBPLω ,Q



LP to BP Transformation
Pole Q of BP Approximations

Define: 0LP

M

BW
ω

ω


 
  
 

ω

 
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1
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H LBW = ω - ω

M H Lω ω ω

Re

Im

Re
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 0BPH BPHω ,Q

 0LP LPω ,Q

 0BPL BPLω ,Q

It can be shown that 
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For d small, LP
BP

2Q
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


It can be shown that 
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Note for d small, QBP can get very large 

(applies to any LP approximation)



LP to BP Transformation
Pole Q of BP Approximations
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2 2 2
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LP to BP Transformation

Classical BP Approximations

ω

 
LPN

T j

ω

 
BP

T j

1

1

ωM

BW

ωL ωH

Butterworth

Chebyschev

Elliptic

Bessel

Obtained by the LP to BP transformation of the corresponding LP approximations



Standard LP to BP Transformation

– Standard LP to BP transform is a variable mapping transform

– Maps jω axis to jω axis

– Maps LP poles to BP poles

– Preserves basic shape but warps frequency axis

– Doubles order

– Pole Q of resultant band-pass functions can be very large for 
narrow pass-band

– Sequencing of frequency scaling and transformation does not 
affect final function 

2

N

s +1
s

s•BW




Example 1:  Obtain an approximation that meets the following specifications

ω

AM

AR

AS

ωMωA ωB ωBHωAL

2 2 2 2

M AL BH M

AL BH

ω -ω  ω - ω

ω •BW ω •BW


B A
BW=ω -ω

M B A
ω = ω ω

Assume that ωAL, ωBH and ωM satsify



Standard LP to BP Transformation
Frequency and s-domain  Mappings - Denormalized

(subscript variable in LP approximation for notational convenience)
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Recall from above:



Example 1:  Obtain an approximation that meets the following specifications
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(actually  ωA and ωAL that map to -1 and -ωS respectively but show 1 and ωS for convenience) 



Example 2:  Obtain an approximation that meets the following specifications
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In this example, 



Example 2:  Obtain an approximation that meets the following specifications
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Example 2:  Obtain an approximation that meets the following specifications
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Stay Safe and Stay Healthy !



End of Lecture 15


